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TOPICAL REVIEW — Modeling and simulations for the structures and functions of proteins and nucleic acids
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Protein–protein interactions (PPI) are important for many biological processes. Theoretical understanding of the
structurally determining factors of interaction sites will help to understand the underlying mechanism of protein–protein
interactions. At the same time, understanding the complex structure of proteins helps to explore their function. And
accurately predicting protein complexes from PPI networks helps us understand the relationship between proteins. In the
past few decades, scholars have proposed many methods for predicting protein interactions and protein complex structures.
In this review, we first briefly introduce the methods and servers for predicting protein interaction sites and interface
residue pairs, and then introduce the protein complex structure prediction methods including template-based prediction
and template-free prediction. Subsequently, this paper introduces the methods of predicting protein complexes from the
PPI network and the method of predicting missing links in the PPI network. Finally, it briefly summarizes the application
of machine/deep learning models in protein structure prediction and action site prediction.
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1. Introduction

Protein is an important executor of biological functions.
With the completion of the Human Genome Project and the
continuous development of protein research technology, pro-
tein science has received more and more attention. Among
them, protein structure-function relationship, protein–protein
interaction, and protein recognition are important contents of
protein scientific research. Due to many difficulties in ex-
perimentally determining the structure of protein complexes,
there is an urgent need to develop effective computer simula-
tion methods to explore the interaction and recognition pro-
cess between protein molecules, and then predict the three-
dimensional structure of the complex formed by protein–
protein binding. The development of theoretical simulation
methods not only helps us understand the mechanism of spe-
cific recognition between protein molecules, but also provides
theoretical guidance for rational drug development and new
protein molecule design. In the past few decades, many high-
throughput methods for protein structure determination based
on x-ray and high-resolution NMR have appeared.[1] How-
ever, most proteins, especially protein–protein complexes, do
not have corresponding structures in the Protein Data Bank
(PDB), which increases the demand for predicting protein in-
teractions and complex structures.

This review aims to introduce the current status of protein
complex interactions and structure prediction. It starts with
a review of existing methods and servers for predicting pro-
tein interaction residues. It is crucial to know protein–protein
interaction interface binding sites (interface residue pairs and
contact map) (see Figs. 1(a) and 1(b)) for comprehensively un-
derstanding the molecular mechanism and confirming poten-
tial drug targets.[2] Besides, the prediction results of protein–
protein interaction interface residue pairs can assist to predict
protein 3D structure. Then it continues with protein structure
prediction methods, including template-based methods and
template-free prediction methods (see Fig. 1(c)). After that,
this paper introduces the prediction of protein complexes from
protein–protein interaction (PPI) network from two aspects,
including complex prediction based on PPI network clustering
and complex interaction link prediction from PPI network (see
Fig. 1(d)). Finally, the application of machine/deep learning in
protein structure prediction is briefly summarized. The main
content of protein interaction calculation is shown in Fig. 1.

2. Protein databases

Two databases are commonly used in the study of protein
structure, they are Protein Data Bank (PDB) and the Electron
Microscopy Data Bank (EMDB) at PDBe.
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(d) protein complex prediction from PPI network
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Fig. 1. The main content of protein interaction calculation.

The PDB database is a macromolecular structure database
established by the Brookhaven laboratory in 1971. The Re-
search Collaboration for Structural Bioinformatics (RCSB) is
responsible for the maintenance of the PDB database. Its data
source mainly determines the three-dimensional structure of
biological macromolecules through experiments (x-ray crystal
diffraction, nuclear magnetic resonance, electron microscope
methods, etc.). It is mainly the three-dimensional structure
of proteins, and also includes the three-dimensional structure
of nucleic acid, carbohydrate, protein, and nucleic acid com-
plexes. The information of the PDB file includes the spa-

tial coordinates of the atoms, the cited literature, the amino
acid sequence forming -helix and -sheet, the disulfide bond
linking mode, the ligand bound to the protein, the residue in-
volved in the biochemical function, etc. The protein recorded
in the PDB consists of a unique PDB-ID, including 4 char-
acters, which can be composed of uppercase letters A to Z
and numbers 0 to 9, such as 1A4S. PDB provides a query for
each PDB record, which can be advanced searched accord-
ing to some special query items (such as structure keywords,
structure author, gene name). We searched the proteins in the
PDB database according to the following conditions: Num-
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ber of Protein Instances (Chains) ≥ 3, Entry Polymer Types
= “Protein (only)”, Polymer Entity Sequence Length ≥ 100,
and Resolution (Å)≤ 3. The number of retrieved protein mul-
timers was counted according to the number of monomers in-
cluded, as shown in Fig. 2. See supplementary data for specific
protein details.
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Fig. 2. Statistics of protein multimers in PDB database.

The EMDB database was established by Kim Henrick at
EBI in 2002. Since 2007, it is jointly operated by PDBe and
RCSB. The EMDB database contains images of different types
of biological macromolecules obtained by cryo-electron mi-
croscopy, including proteins, nucleic acid, prokaryotic ribo-
some, eukaryotic ribosome, ligand, and cell component. Cur-
rently, there are 9355 protein cryo-EM images in EMDB, of
which 3283 images have a resolution of less than 4 Å.

3. Interface residue pair prediction
Protein residues are an important part of proteins. The

contact and structure of residue pair prediction has also be-
come an important part of protein structure prediction. As the
experiment progressed, there have been more and more algo-
rithms for protein structure and protein interaction prediction,
and then more servers appeared to be applied. In this section,
we will review some of the servers for predicting protein in-
teraction residues and residue pairs.

We know that proteins rarely perform their functions
alone, and most of them form complexes or protein–protein in-
teractions (PPI) networks with other proteins. However, struc-
tural analysis of PPI may require its three-dimensional struc-
ture. An important step in predicting the three-dimensional
structure of protein complexes is to predict the interaction
residue pairs between proteins. Direct evolutionary coupling
analysis (DCA) is widely used to identifying coevolutionary
residue pairs. DCA is very effective in intra-protein contact
prediction,[3] but it does not perform well in inter-protein con-
tact prediction, which is a great challenge because this kind of
prediction requires too many interacting homologs to perform
better, which is not easy to achieve. However, deep learn-
ing (DL) methods are better than DCA for predicting contacts

between proteins. Wu et al. proposed ComplexContact[4]

(http://raptorx.uchicago.edu/ComplexContact/), which is a
web server of protein complex interface residue pair predic-
tion. This server can predict the contact between residues
from different proteins without using any structural template.
For the interaction between a pair of protein sequences A
and B, they first search for homologs of protein sequences A
and B through HHbits and establish MSA separately. Then
two methods (genome and phylogeny-based) are used to con-
struct the paired MSA. The construction methods of genome
and phylogeny-based MSA are complementary. Generally, for
prokaryotes, the genome method is better. And for eukary-
otes, biophylogeny-based methods are better. Through the
DL model, the contact map between the two proteins is pre-
dicted, and the prediction result is calculated. The DL model
is mainly composed of two ResNets. One processes sequence
features; the sequence features are first subjected to a one-
dimensional convolution transformation, and the output is con-
verted into a two-dimensional matrix while being fed into the
second ResNet together with the paired features. The second
ResNet is used to process the paired features, and the inputs
are subjected to two-dimensional convolution transformation,
and its outputs will be input to the logistic regression, which
can predict the contact probability of any two residues.

DCA is widely used in protein contact prediction, but
DCA is only effective for proteins with a large number of
sequence homologues.[5] Current contact prediction meth-
ods are roughly divided into two categories: evolutionary
coupling analysis (ECA) and supervised machine learning.
ECA predicts by recognizing co-evolutionary residues of pro-
teins. Supervised machine learning requires various kinds
of information to make predictions. The Jinbo Xu team
also proposed a new server to accurately predict the protein
contact map from the ultra-deep learning model. The DL
model is still used in this server. RaptorX-Contact[6] is a web
server (http://raptorx.uchicago.edu/ContactMap/), and it also
can predict a contact map and distance matrix without any
templates. It uses an ultra-deep convolutional residual neural
network to predict contact and distance, and can perform well
on proteins without many sequence homologs. This method
predicts the contact and distance matrix with a whole protein,
rather than predicting the interaction of a residue pair by each
residue, thus greatly improving the accuracy of prediction.
Contact prediction can help predict protein structure. In order
to better model the 3D structure, the top contact prediction
is used here as a constraint for de novo folding to construct
a protein structure model. Similarly, RaptorX-Property[7]

(http://raptorx.uchicago.edu/StructurePropertyPred/predict/)
is a web server that can predict the structure of protein se-
quences without using any template. The model of deep con-
volutional neural fields (DeepCNF) is applied to this server.
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Gremlin[8–10] (http://gremlin.bakerlab.org/complexes.php)
is a statistical model method for learning protein families pro-
posed by Baker’s team. This model can capture the conserva-
tive and co-evolutionary patterns of the family, and predict the
contact of residue pairs in the 3D structure of proteins through
the strength of co-evolution. In this study, a statistical method
based on pseudo-likelihoods was used to study the covariance
of residue pairs across the protein–protein interface. They
further found that significant residual pair covariance often
occurs between physically interacting protein pairs, but rarely
between non-interacting protein pairs, which is very useful for
predicting whether two proteins interact.

Of course, there are also some other teams using
different methods to build the servers, for example, an-
other improved protein contact graph predictor DNCON2[11]

(http://sysbio.rnet.missouri.edu/dncon2/) with a two-layer
convolutional neural network. We know that the EVfold
method opens up a new world with the aid of mean field direct
coupling analysis (EVfold-mfDCA). The PSICOV[12] method
applies the concept of estimating sparse inverse covariance
matrix. But these two methods belong to interactive appli-
cations, which require too much CPU time. FreeContact[13]

(https://rostlab.org/owiki/index.php/FreeContact) can accel-
erate EVfold-mfDCA. In the 140 proteins of the test
set, FreeContact is nearly 8 times faster than PSICOV
without deterioration of results. The last is the Coin-
Fold Web server[14] proposed by Wang et al. CoinFold
(http://raptorx.uchicago.edu/ContactMap/) is used for protein
contact prediction and contact-assisted Web server structure
prediction from scratch.[15] CoinFold predicts contact using
integrating evolutionary coupling (EC) and machine learning.

In addition to the methods introduced above, our team
also proposed some methods for this problem. Zhao et
al.[16] proposed a multi-layered deep learning approach with
long-short term memory (LSTM) networks to predict inter-
face residue pairs. In this method, every surface residue pair
was described using eighteen features, including geometric
and physicochemical properties. Sun et al.[17] proposed a deep
learning method for tetramer protein complex interface residue
pair prediction with long-short term memory networks com-
bined with graph representations. In this method, we consid-
ered that every residue of a protein monomer can be affected
by residues around it. So we represented each residue with a
graph, and the neighbor nodes in the graph were the k residues
closest to the residue. Liu et al.[18] improved the LSTM with
attention mechanism and residual architecture, and used the
model to predict interface residue pairs, which achieved good
performance.

4. Protein complex structure prediction

Protein complexes play an important role in life activi-
ties, participating in the regulation of gene expression, elec-
tron transmission, nerve transmission in cells, and even learn-
ing and memory. At present, there are many computational
algorithms for predicting the structures of protein complexes.
These methods can be roughly divided into two classes —
template-free (docking) and template-based methods.[19] The
docking methods derive the structure of the protein complex
from the unbound structures of several proteins, which are ob-
tained by x-ray or nuclear magnetic resonance (NMR). The
template-based approaches use the similarities with known
complex structures to predict. The following sections will in-
troduce some template-free and template-based methods re-
spectively.

4.1. Template-free prediction (multimer docking)

Usually, the protein complex structures are obtained by
‘docking’. Docking is to find the best matched 3D structure
of protein complex formed by several component proteins.[20]

A docking algorithm includes a fast search program to search
all possible spatial conformations and a scoring function to
sort the searched conformations. The commonly used spa-
tial search methods are fast Fourier transform (FFT), genetic
algorithm (GA), and Monte Carlo (MC). In addition, there
are some other methods for conformation search, such as
spherical polar Fourier correlation,[21] conformational space
annealing,[22] and molecular interaction field.[23] The com-
monly used scoring items currently include: geometric com-
plementary, interface contact area, van der Waals forces and
electrostatic, and statistical pairing preference.

Most docking procedures are for two proteins, receptor
and ligand. First, in order to reduce the influence of the high
degree of freedom of the protein backbone and side chains,
the protein is treated as a rigid body. And the relative binding
orientations of the ligand and the receptor are decided by trans-
lating and rotating the ligand in six degrees. Then the structure
obtained in the first step is optimized by a local search, where
some of the side chains and interface residues can move freely.

However, the large number of possibilities for the position
and angle of protein residues and side chains makes the com-
putational cost of search algorithms the most difficult problem
in protein–protein docking. The search algorithms used for
rigid protein docking can be roughly divided into 3 categories
(Table 1).

There are currently many docking procedures between
two proteins, but there are relatively few docking approaches
applicable to three or more proteins. One of the representa-
tive methods is M-ZDOCK developed by Zhiping Weng et
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al.[24] M-ZDOCK can use the structure of monomeric pro-
teins to predict the structure of circular symmetric (Cn) com-
plexes. It uses a grid-based FFT method to search for the
best structure in a fully symmetric space of multimers. The
scoring function used by M-ZDOCK is similar to that used in
ZDOCK.[25] It scores the searched structure through surface
complementarity, electrostatics, and desolvation. Experiments
showed that this method has improved accuracy and running
time. Similar to the function of M-ZDOCK, there are some
other methods for prediction of cyclically symmetric (Cn)

multimers structure, such as RosettaDock,[26] ClusPro,[27] and
HDOCK.[28,29] Besides methods for Cn complexes, there are
also some docking methods for homo-oligomers with dihe-
dral symmetric (Dn) complexes, such as HSYMDOCK[30] and
SAM.[31]

Table 1. Classification of optimization algorithms applied by protein protein
docking approached.

Optimization algorithms Programs
Fast Fourier transforma-
tion

ZDOCK; GRAMM; DOT; SmoothDock;
ClusPro; MolFit; FTDock; 3D-Dock;
PIPER; pyDock; HDOCK; SDOCK; HEX;
FRODOCK; InterEvDock; MDockPP;
CoDockPP; HSYMDOCK; SAM

Monte Carlo RosettaDock; ICM-DOCK; HADDOCK;
ATTRACT

Genetic algorithm DARWIN; Multi-LZerD; AutoDock

Another docking procedure for multimers is Multi-
LZerD, which can dock proteins other than symmeric multi-
mers and does rely on the prior availability of biological in-
formation (e.g., interation sites). It is a multi-stage method,
where the first stage uses the docking program LZerD to dock
the pairwise proteins to obtain a large number of docking con-
formations. The conformational space of entire complex is
constructed using pairwise decoys as building blocks. Then it
uses genetic algorithms to combine the docking results. After
each iteration, the qualities of complex decoy structures are
assessed by a physics-based scoring function. Finally, after
many iterations, the final decoy is obtained and the optimal
structure is refined.

4.2. Template-based prediction

With the increase in the amount of protein structure data,
template-based protein structure prediction methods have been
widely used, that is, using sequence or structure similar-
ity to model protein complexes with known structures. For
template-based methods, the process is simple and clear: se-
lecting high-quality template data consisting of protein com-
plexes of known structure, inferring known data by using se-
quence or structural similarities to identify unknown interac-
tions, and according to the prediction, the results are ranked by
a score function, that is, statistical potential or energy function.

Template-based methods mainly reduce the possible structure
by restricting the direction of protein binding. This method is
more efficient than docking and can be applied to larger-scale
protein complex prediction.

This kind of methods is based on the fact that if the pro-
tein sequence identity is as high as 30%–40%, then they are
combined in a similar way. However, in order to reliably map
the internal dialogue between protein–protein interactions be-
tween different species, it was found that the combined se-
quence identity is at least 80%.[32] Aloy and Russell’s[33] pre-
liminary analysis of the complex with known 3D structures
showed that protein interactions occur through various main
chain and side chian contacts. They first determined the inter-
face residues at the interface between two proteins. Then, they
used electrical potential to score the compatibility of homolo-
gous species sequences. If the score is high enough, the homo-
logue will bind to the template in a similar manner. Later, they
designed a web server to predict protein interactions using this
method.[34]

Skolnick et al. have also achieved certain results in pre-
dicting protein interactions based on homology. They devel-
oped a multimeric threading approach, which is comprised
of two phases.[35] In the first phase, a protein structure cor-
responding to each target sequence in the template library is
found using a threading algorithm, PROSPECTOR developed
by them before. In the second phase, the same method was
applied to multiple chains. This algorithm has certain flaws
in considering conformational changes and determining the
relative position of proteins. M-Tasser[36] explicitly conbines
the flexibility of a backbone with threadings for prediction.
Simonson et al.[37] considered structural homology and com-
plexes formed between single-domain proteins in the template
dataset. In addition to homology, Shoemaker et al. integrated
structural similarity of the overall protein structure to predict
protein complexes. In addition to sequence similarity, Aloy
et al.[38] also considered the overall structural folding simi-
larity to make the structural interaction network more com-
plete. Nye et al.[39] used statistical analysis to predict domain
pairs that mediate protein–protein interactions. PISA[40] and
ProtCID[41] were developed to model complexes using chem-
ical thermodynamics and interface residue pair dynamics, re-
spectively.

5. Protein complex prediction from PPI net-
works
With the development of high-throughput technology,

we can get more and more protein–protein interaction (PPI)
data.[42–45] These PPI data can be represented by graphs or
networks, where vertices in the network represent proteins and

108707-5



Chin. Phys. B Vol. 29, No. 10 (2020) 108707

edges represent protein–protein interactions. Biologists can
use these large amounts of PPI data and PPI networks to gain
insights into cells and their internal proteins.[46] For example,
an overall analysis of the PPI network can understand the re-
lationship between protein interactions and functioning.[47–49]

We can also use the PPI network to predict protein pathways,
gene functions, or protein complexes through machine learn-
ing methods.[50–58] In addition, many efforts have recently
been made to integrate PPI networks to build a complete di-
agnosis and treatment system for complex diseases.[59–63]

However, the rapid increase in the number of protein
tests and the expansion of the PPI network have brought great
challenges to biologists. First, there are many unlabeled or
mislabeled real interactions in the existing PPI network.[64]

Second, most PPI networks are sparse, which brings misery
to neighbor-based algorithms.[52,56] Third, PPI networks are
known to have skewed degree distributions, which means that
the number of their hub genes exceeds expectations.[65] Such
central nodes often degrade the performance of existing graph
theory algorithms. These algorithms are usually effective for
networks with uniform degree distribution. In the following
sections, we briefly review some methods for predicting pro-
tein complexes and link prediction through PPI networks.

5.1. Complex prediction based on PPI network clustering

In general, most methods assume that the protein complex
is part of a known PPI network, that is, the graph composed of
protein complexes and their interactions are a subgraph of the
PPI network. Some of these methods only use the PPI network
for clustering, and some use additional biological information,
including structure, function, organization, co-evolution infor-
nation, etc.[66]

MCODE (Molecular COmplex DEtection), proposed by
Bader and Hogue[67] is one of the earliest computational meth-
ods to predict protein complex from PPI networks. The
MCODE algorithm is implemented in three stages: vertex
weighting, complex prediction, and a subsequent optional
step to reduce or add some proteins to the resulting complex
through the connectivity criterion. In the first stage, MCODE
weights all vertices using the network density based on the
highest k-core of the vertex neighborhood. In the second stage,
the protein with the highest weight will be selected into the
complex.

Van Dongen proposed a graph clustering algorithm, MCL
(Markov clustering), which uses random walks to extract
dense subnetworks on graphs for clustering. Subsequently,
the MCL algorithm is very effective in clustering protein com-
plexes and functional modules from PPI networks.[68–70] MCL
adjusts the adjacency matrix of the network through expansion
and inflation to increase the probability of intra-cluster walk

and reduce the probability of inter-cluster walk. In this way,
the network is divided into multiple non-overlapping regions
through multiple iterations.

Blatt et al.[71] and Getz et al.[72,73] proposed SPC (super-
paramagnetic clustering), which was improved from the Potts
model. The Potts model is a model of ferromagnetism, where
each data point in the metric space is clustered according to
the “spins” assigned to them. In 2003, Spirin and Mirny[74]

applied SPC to protein complex prediction in PPI networks.
In 2005, Li et al.[75] proposed LCMA (local clique merging
algorithm), which can identify some small cliques and merge
them into high-density subgraphs. In 2008, Qi et al.[76] pro-
posed the SuperComplex (supervised protein complex predic-
tion) method, which uses Bayesian network models to learn
the features of real protein complexes to cluster PPI networks.
The supervised Bayesian network (BN) method is a machine
learning method. The positive samples in the training set come
from real protein complexes, and the negative samples are ran-
domly selected proteins from the PPI network into groups.
Yong et al.[77] and Srihari et al.[78] proposed ensemble meth-
ods, which used several methods to cluster PPI networks and
used majority voting to decide the final predicting results. In
addition, there are some other methods such as CFinder[79]

(complex finder), DPClus[80] (density-periphery-based clus-
tering), IPCA[81] (interaction probability-based clustering al-
gorithm), CMC[82] (clustering based on merging maximal
cliques), ClusterONE[83] (clustering with overlapping neigh-
borhood expansion), and HACO[84] (hierachical agglomera-
tive clustering with overlaps).

5.2. Complex interaction link prediction from PPI net-
work

In recent years, scientists have developed many methods
to predict the actual links in the network,[85–88] and reviewed
by Lü and Zhou.[89] There are some methods applied to the
PPI network, which can be roughly divided into two cate-
gories, public neighbors and distance.

One of the simple ideas is there may be two nodes in the
same module sharing many common neighbors.[86,87,90] These
methods have limited effect on sparse networks. Fang et al.[91]

considered neighbors with greater distances and proved that
the measurement of global geometric affinity (GGA) can pre-
dict new PPI. Considering that the matrix model can be used
to model the network structure, Xu Qian et al.[92] introduced
a matrix factorization-based method to predict exact links in
sparse networks based on relatively dense networks. In ad-
dition, Park and Bader have developed hierarchical agglom-
erative clustering (HAC) algorithm,[93] for rapid clustering of
heterogeneous interactive networks. The algorithm uses max-
imum likelihood to cluster the network structure.
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The second method measures the distance between all
pairs of nodes in the network. Typical methods include ran-
dom walk-based methods, such as Euclidean commute time
(ECT)[88] and random walk with restart (RWR).[85] Kuchaiev
et al.[94] attempted to use multiple dimensional scaling (MDS)
to map the PPI network to a low-dimensional space, and to al-
locate edges between pairs of nodes in the embedded space
that have short distances. Lei and Ruan[65,95] proposed an al-
gorithm that uses random walk to determine that certain com-
pounds belong to similar compounds by measuring the topo-
logical similarity of the two networks. In additional, Wang
Liang et al.[96] used link-weighted PPI networks to enhance
the robustness of the method.

6. Machine learning and deep learning applica-
tions
In recent years, artificial intelligence has been greatly de-

veloped. At the same time, methods based on machine learn-
ing and deep learning have been successfully applied to vari-
ous prediction problems in biology, such as protein structure
prediction and protein interaction prediction.

Since the 1990s, researchers have used contact maps to
reconstruct the three-dimensional structure of proteins.[97–99]

Although reconstructing the three-dimensional structure of
proteins through contact maps is a NP-hard problem,[100] there
are many methods to approximate this problem[99,101,102] and
optimize the computational efficiency.[98] Using the distance
map and the multi-class contact map can obtain more accu-
rate protein structures and make the prediction results more
robust.[103,104]

Machine/deep learning methods such as FFNN, BRNN,
and multi-satge approaches have been used to predict whether
any two residues in a protein are in contact since the late
1990s. Similarly, disulphide can be predicted by Monte
Carlo simulation annealing,[105] or hybrid methods like hid-
den Markov models and FFNN,[106] multi-stage FFNN, SVM,
and BRNN,[107] and machine learning methods like SVM,[108]

deep learning methods like BRNN[109] and FFNN.[110]

Recently, with the increase of co-evolution information
and computing resources, the prediction of contact graphs
has broken through.[111] PSICOV,[12] FreeContact,[13] and
CCMpred[112] are notable achievements of GPU develop-
ment, they allow the development of a growing database
and have triggered a new round of deep learning meth-
ods. RaptorX-Contact is a contact predictor based on resid-
ual CNN architecture.[6] DNCON2[11] is a two-stage CNN
model with features similar to MetaPSICOV. DeepCov uses
CNN and some co-evolution information to predict con-

tact maps.[113] SPOT-Contact[114] was inspired by RaptorX-
Contact and added the residual two-dimensional bidirectional
LSTM layer behind the original CNN. AlphaFold[115] is cur-
rently the best performing protein structure predictor, which
uses a very deep residual neural network with 220 residual
blocks.

In addition, in recent years, there have also been some
machine/deep learning methods that predict protein–protein
interaction sites and interface residue pairs. Among the many
machine learning methods, the following methods are the
most successful: support vector machine (SVM)[116–121] and
fuzzy SVM,[122] neural networks (NN),[123–128] Bayesian net-
works (BN),[129,130] naive Bayes classifier (NBC),[131,132] ran-
dom forests (RF),[133–136] cascade random forests (CRF),[137]

conditional random fields (CRF),[138] extreme learning ma-
chine (ELM),[139] L1-logreg classifier,[140] and the ensem-
ble method.[141–144] The most commonly used algorithms in
deep learning, convolutional neural network (CNN)[145] can
be used to extract features from input. Besides, the long short-
term memory neural network (LSTM) is also used to predict
protein–protein interaction interface residue pairs.[16]

7. Conclusion and perspectives
In the past few decades, scientists have conducted in-

depth studies on protein–protein interactions, and have pro-
posed many interaction interface residues, protein docking,
and complex prediction algorithms to predict the structure of
protein complexes. We have organized the methods, descrip-
tions, advantages, and limits of these types of problems, as
shown in Table 2. However, there is still a lot of work on these
issues that can be further improved. The future development
trend of protein complex structure prediction should improve
the complex prediction system shown in Fig. 3.

Two topics need to be considered: efficiency and accu-
racy. For example, in protein docking, how to search the con-
formation space more efficiently is a question that can be con-
sidered. When designing a deep learning model, a deep and
complex network does not mean that there will be good pre-
diction results. While ensuring accuracy, the model solves the
problem more efficiently is what we need. When it comes
to accuracy, many deep learning models are not very inter-
pretable. This means that deep learning models still need to be
optimized and more specific to the problem. Especially in the
problem of protein–protein interaction interface residue pairs
prediction with extreme imbalance of such positive and nega-
tive samples, the accuracy needs to be improved. The current
methods can not actuallly provide practical help for biological
experiments.
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Table 2. The summary of protein complex calculations.

Methods Description Advantages Limits
Interface residue
pair prediction

ComplexContact; RaptorX-Contact;
RaptorX-Property; Gremlin; DNCON2;
PSICOV; FreeContact; LSTM; LSTM
with Graph Representation

Direct evolutionary
coupling analysis
(DCA), machine
learning and deep
learning methods

Interfacial residue pair
prediction can help sub-
sequent protein complex
structure predictions, such
as docking.Protein contact
map prediction can help
reconstruct the three-
dimensional structure of
protein complexes.

The accuracy of
interface residues
for prediction
needs to be
improved.

Protein structure
prediction

Template-free ZDOCK; GRAMM; DOT; Smooth-
Dock; ClusPro; MolFit; FTDock;
3D-Dock; PIPER; pyDock; HDOCK;
SDOCK; HEX; FRODOCK; In-
terEvDock; MDockPP; CoDockPP;
HSYMDOCK; SAM; RosettaDock;
ICM-DOCK; HADDOCK; ATTRACT;
DARWIN; Multi-LZerD; AutoDock

The search strategies
of these methods are
mainly FFT, GA and
MC.

Protein docking can give
all possible complex struc-
tures, some of which can
also dock Cn and Dn com-
plexes.

Designing an
effective scor-
ing function to
sort the docking
structure remains
to be further
explored.

Template-based InterPreTS; Multimeric threading ap-
proach; M-Tasser; PISA; ProtCID

Using sequence or
structure similarity to
model protein com-
plexes with known
structures.

Template-based methods
mainly reduce the possible
structure by restricting
the direction of protein
binding. This method is
more efficient than dock-
ing and can be applied
to larger-scale protein
complex prediction.

For proteins with-
out a template,
the structure of
the complex can-
not be predicted.

Protein complex
prediction from
PPI networks

Complex predic-
tion based on PPI
network cluster-
ing

MCODE; MCL; SPC; LCMA; Super-
Complex; BN; CFinder; DPClus; IPCA;
CMC; ClusterONE; HACO

The protein complex
is part of a known
PPI network, that is,
the graph composed
of protein complexes
and their interactions
is a subgraph of the
PPI network.

Some of these methods
only use the PPI net-
work for clustering, and
some use additional bi-
ological information, in-
cluding structure, func-
tion, organization and co-
evolution infornation, etc.

The proteins that
may form com-
plexes can only
be picked out
from the existing
PPI network.

Complex interac-
tion link predic-
tion from PPI net-
work

GGA; HAC; ECT; RWR; MDS; Link-
weighted PPI

Methods to predict
actual links in the
network include pub-
lic neighbors-based
methods and distance-
based methods.

This type of method
predicts possible protein–
protein interactions based
on existing network
information.

Public neighbors-
based methods
have limited
effect on sparse
networks.

from sequence predicting 

structure

contact map prediction

distance map prediction

important interface 

prediction

protein monomer 

structure prediction

interface residue pair 

prediction

protein complex 

prediction from PPI 

network

super large compounds 

structure prediction

Fig. 3. The system of protein complex prediction.
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