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A B S T R A C T

Motivation: Protein-protein interactions are important for many biological processes. Theoretical understanding
of the structurally determining factors of interaction sites will help to understand the underlying mechanism of
protein-protein interactions. Taking advantage of advanced mathematical methods to correctly predict inter-
action sites will be useful. Although some previous studies have been devoted to the interaction interface of
protein monomer and the interface residues between chains of protein dimers, very few studies about the in-
terface residues prediction of protein multimers, including trimers, tetramer and even more monomers in a large
protein complex. As we all know, a large number of proteins function with the form of multibody protein
complexes. And the complexity of the protein multimers structure causes the difficulty of interface residues
prediction on them. So, we hope to build a method for the prediction of protein tetramer interface residue pairs.
Results: Here, we developed a new deep network based on LSTM network combining with graph to predict
protein tetramers interaction interface residue pairs. On account of the protein structure data is not the same as
the image or video data which is well-arranged matrices, namely the Euclidean Structure mentioned in many
researches. Because the Non-Euclidean Structure data can't keep the translation invariance, and we hope to
extract some spatial features from this kind of data applying on deep learning, an algorithm combining with
graph was developed to predict the interface residue pairs of protein interactions based on a topological graph
building a relationship between vertexes and edges in graph theory combining multilayer Long Short-Term
Memory network. First, selecting the training and test samples from the Protein Data Bank, and then extracting
the physicochemical property features and the geometric features of surface residue associated with interfacial
properties. Subsequently, we transform the protein multimers data to topological graphs and predict protein
interaction interface residue pairs using the model. In addition, different types of evaluation indicators verified
its validity.

1. Introduction

Proteins are the principal catalytic agents, structural elements,
signal transmitters, transporters and molecular machines in cells [1].
But individual proteins do not function alone; they must interact with
other molecules to carry out their cellular roles. At present, there are
some issues in the field of protein-protein interaction, and the study of
protein-protein interaction structure is one of them. That is, we know
the structure of two proteins and they will interact with each other, and
we need to determine how they interact with each other in the atom
level. The difficulty of this problem is about the same with protein
folding. It's crucial to know protein-protein interaction interface
binding sites (interface residue pairs) for comprehensively under-
standing molecular mechanism and confirming potential drug targets

[2]. Besides, the prediction results of protein-protein interaction in-
terface residue pairs can assist in predicting protein 3D structure.

There are many experimental methods to confirm protein-protein
interaction interface residue pairs including X-ray crystallography and
nuclear magnetic resonance (NMR). These experiments are extremely
valuable and have contributed greatly to our knowledge of protein re-
cognition mechanisms. However, technical challenges, such as diffi-
culties in expressing and purifying aggregation-prone protein samples,
obtaining high quality crystals, as well as the protein size constraints
(for NMR), make such experiments both labor-intensive and time-con-
suming. Because high throughput experimental characterization of
protein interfaces is not yet possible, reliable computational approaches
to identify interfacial residues are especially valuable. Therefore, using
deep learning methods to predict protein interaction interfaces has
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become an inevitable trend.
At present, the contact map of protein monomer and the technology

of protein dimer interface prediction are quite mature. There are cur-
rently two major methods for predicting protein contact maps:
Evolutionary Coupling Analysis (ECA) and machine learning methods.
ECA method uses Multiple Sequence Alignments (MSAs) [3] to de-
termine the correlation of co-evolutionary residue pairs based on the
idea that adjacent residues are mutated and evolved in synchronization
with function and structure. These methods benefit from the acquisition
of protein sequence information over the past decade. Popular ECA
methods include: CCMPred [4], FreeContact [5], GREMLIN [6],
PlmDCA [7] and PSICOV [8]. In addition, there are many more accurate
prediction methods based on machine learning. These methods predict
the interface by learning the relationship between sequence-based
features and data labels. Early machine learning methods include:
Support Vector Machines (SVM) [9], SVMCon [10], SVNSEq. [11] and
the recently-released R2C [12]. In addition, with the development of
deep learning technology in recent years, some methods based on deep
neural networks have emerged, such as RNN and Deep Belief Networks
[13]. Such predictors include Betacon [14], CMAPPro [15], Deep-
ConPred [16], NNCon [17] and ResNet [18].

However, one of the great challenges now facing us is the problem
of protein polymer interface prediction. This is because a considerable
part of protein is composed of multiple monomers. Due to the complex
structure of protein polymers, the prediction of the interface residue
pairs of the protein polymers by computational methods has important
guiding significance for the experimental biologists to analyze the
structure. In this paper, we did some work on predicting protein tet-
ramer interface residue pairs, and set up a web server for others to use.

We defined the interface residue pair as follows. If the contact areas
between two amino acids from two different monomers are not zero, we
called these two residues in contact. And these two residues are inter-
face residue pair.

2. Materials and methods

2.1. Dataset

In this paper, we find 107 protein tetramers in the following table
satisfying our requirements in the Protein Data Bank. The requirements
include the following several points: the number of chains is 4, the
chain length is between 50 and 500, and the experimental method is X-
ray. We divided the 107 tetramers in two parts randomly, three fifths of
the tetramers (65 tetramers) into training set and the rest of the tetra-
mers (42 tetramers) into test set. Besides, the training set is divided into
five equal parts randomly in order to do five-fold cross-validation. (See
Table 1.)

2.2. Features

Protein-protein interface residues have different values in some
features, which can help us to distinguish interface residue pairs and
non-interface residue pairs. We used nine features to describe each
residue, some of which were proposed by our lab.(See Table 2.) These
features include five geometric characteristics: Interior Contact area
(IC), Exterior Contact area with other residues (EC), Exterior Void area
(EV), Absolute Exterior Solvent Accessible area (AESA) and Relative
Exterior Solvent Accessible area (RESA). The Interior Contact area is the
contact area among atoms in one residue. The Exterior Contact area
with other residues is the contact area among the atoms of aimed re-
sidue and other residues. The Exterior Void area is the area of the part
of aimed residue, which doesn't contact with other residues. Absolute
Exterior Solvent Accessible area is the surface area of a residue that is
accessible to a solvent. Relative Exterior Solvent Accessible area of a
protein residue is a measure of residue solvent exposure. It can be
calculated by formula:

=RESA AESA
AESAmax

where maxAESA is the maximum possible exterior accessible surface
area for the residue. Besides, we also employed other four features to
describe a residue, such as Hydropathy Index (HI, two versions) and
pKa (two versions). Fig. 1 shows three of the geometric features.

2.3. Methods

2.3.1. Regarding a protein residue as a graph
Every residue of a protein monomer can be affected by residues

around it. In addition, we all know that a protein monomer has

Table 1
Dataset.

DataSet PDB ID

Training Set Cross-Validation Set 1 1L3A 1U4F 1WYT 2A2U 2EPI 3IB6 3ITY 1REW 2Z8U 3SDL 1AGQ 2PBY 1B79
Cross-Validation Set 2 1FS2 1INL 1Q15 2NLZ 3CKY 3IWV 3QBP 1A4Y 2ZIH 3KKK 1F5Z 2PK2 1I7X
Cross-Validation Set 3 1E65 1LBI 1SWF 1SWH 2EP5 2QW6 3B8F 1GPQ 1QUQ 2ZME 1PV1 1U9Y 3G33
Cross-Validation Set 4 1BML 1QYN 1UDD 2H3N 2OKA 2XHZ 3AUP 1BDF 2WBL 3CUQ 3KYH 2OGK 1Y14
Cross-Validation Set 5 1J2W 1QSO 2ESN 2GAC 2WKC 3E5B 3TUO 1J1J 1UDR 2OZK 3Q2S 3AQQ 1M1L

Test Set 1C4P 1FTR 1FX3 1HXH 1OFT 1Q5V 1QVC 1TJV 1UFQ 1VL2 1X75 2E3D 2E6E
2H8N 2JBR 2NQO 2Y32 3DFQ 3ESI 3G7K 3HM0 3OHP 3RD4 3V15 1IZ1 1JL2
1KAM 1NSW 2GJD 2R90 2ZYZ 3CDK 3CO2 3DMP 3F6Z 1BV4 1YIF 2ACI 3BF0
1P27 1WWH 2NNW

We divided the training set into five parts. When training the model, we use data of four parts to train the model, and use the other one part to test the performance of
the model. Each cross-validation set is used to test the model. Then we calculated the average performance of the model. After that, we used all the training data to
train the model, and used the test set data to test the model.

Table 2
Nine features used in this paper.

Features Abbreviation Software or Researchers

Absolute Exterior Solvent Accessible
area

AESA NACCES [19]

Relative Exterior Solvent Accessible
area

RESA NACCES

Exterior Contact area with other
residues

EC Qcontacts [20]

Interior Contact area IC Qcontacts
Exterior Void area EV NACCES, Qcontacts
Hydropathy index, version 1 H1 Jack Kyte et al. [21]
Hydropathy index, version 2 H2 David Eisenberg [22]
pKa1: computation pKa1 PROPKA3.1 [23]
pKa2: standard pKa2 PROPKA3.1

The first column is the names of features. The second column is the abbrevia-
tion of these features. The third column is the software to calculate features or
researchers proposing features.
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sequence structure and three-dimensional folding structure. That means
a residue can be affected by residues close in space, not only by residues
near in the sequence order. For each residue, we can find several re-
sidues of this monomer, which have shortest Euclidean distances be-
tween them and the aimed residue. We took these residues as the
neighbors of the aimed residue. At this time, we can make a simple
graph for each residue. The graph has a center node, which is the aimed
residue. Other nodes of the graph are neighbor nodes. There are edges
between center node and neighbor nodes. Every node of the graph is
represented by feature vector, which contains nine features mentioned
previously. Every edge of the graph is represented by the distance be-
tween nodes, which is the distance of residues. Fig. 2 shows the process
of regarding a protein residue as a graph.

2.3.2. Long short-term memory networks
Long short-term memory (LSTM) is an artificial recurrent neural

network architecture [24] used in the field of deep learning. Unlike
standard feedforward neural networks, LSTMs has feedback connec-
tions that make it a “general purpose computer” (that is, it can compute
anything that a Turing machine can) [25]. It can not only process single
data points, but also entire sequences of data.

In response to the problem of gradient vanishing and gradient ex-
ploding problem in RNN (Recurrent Neural Network), Hochreiter and
Schmidhuber improved its hidden layer in 1997 and invented the LSTM
neural network. LSTM introduces memory cells to replace hidden nodes
in traditional RNN. A common LSTM unit is composed of a cell, an input
gate, an output gate and a forget gate. The cell remembers values over
arbitrary time intervals and the three gates regulate the flow of

information into and out the cell. The structure diagram of LSTM neural
network is shown in Fig. 3.

In the LSTM neural network, it is divided into long-term memory
and short-term memory. Long-term memory runs through the network.
In each memory unit, the forget gate determines the part to be forgotten
from the long-term memory, the input gate determines to obtain the
information from the input and short-term memory and update it to the
long-term memory, and the output gate determines the output in-
formation from the input and the short-term memory. Finally, the
output information from long-term memory and output gate are com-
bined to obtain a new short-term memory, which is also the output of
the memory unit. LSTM memory unit structure diagram is shown in
Fig. 4.

The description of LSTM memory unit:
In Fig. 4., Ct, ht and Xt is the long-term memory, short-term memory

and input at time t, respectively. σ is the sigmoid activation function
and tanh is hyperbolic tangent activation function.

Step 1: Select the forgotten information. Through the forget gate,
the short-term memory and input of the previous moment are stitched
together, and we get ft by sigmoid. Each element of the ft vector is in the
interval [0,1], where 0 represents all forgotten, and 1 represents all
reserved.

= +−f W h bσ( ·[ , X ] )t f t t f1

Step 2: Select the information to be retained. In the input gate, the
sigmoid function is used to decide which information to update (it), and
the tanh function is used to generate the updated long-term memory
information ∼Ct .

= +−i W h X bσ( ·[ , ] )t i t t i1

= +∼
−C W h X btanh( ·[ , ] )t c t t c1

Step 3: Update the information in the memory unit. Multiply the ft
output from the forget gate by the long-term memory Ct−1 in the pre-
vios layer to determine the part of long-term memory to be forgotten.
Then multiply the update information generated by the second step ∼Ct
and i_t to determine which of the input information is retained. Then we
can add the information from these two steps to get a new long-term
memory.

= + ∼
−C f C i C· ·t t t t t1

Step 4: Decide on output. First we use the sigmoid function to de-
termine which state information needs to be output (ot). Then the long-
term memory is compressed between −1 and + 1 by tanh function,
and multiplied by ot obtained before to calculate the information to be
output.

= +−o W h X bσ( ·[ , ] )t o t t o1

=h o C·tanh( )t t t

Fig. 1. Schematic diagram of EC, IC and EV. We used the features mentioned
previously to discriminate between interface residue pairs and non-interface
residue pairs.

Fig. 2. Schematic diagram of graph representation.
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where, Wf, Wi, Wc, Wo and bf, bi, bc, bo are the weights and biases
corresponding to each step respectively. The weights and biases of each
step are not shared.

Through the previous description of LSTM Network, we can know
that LSTM is not limited to the classification of time series data. It can
process any sequence data. For example, a dataset X, of which sample
space size is N. And the sample {x1,x2,…,xN} is a series data, that is,
there is a relationship between each sample and the samples before and
after it. Such data is within the range that the LSTM model can handle.

2.3.3. Our model
In this paper, we proposed a method for predicting protein-protein

interface residue pairs base on deep learning, by using protein geo-
metric and physicochemical characteristic, and LSTM model combined
with graph representation. The main ideas are as follows.

First, we downloaded protein tetramers from Protein Data Bank
(PDB) and calculated geometric and physicochemical features of pro-
tein residues. Then, we found the k nearest residues of each residue,
where k is a variable and we want to find the optimal value of k. We
constructed each residue into a graph using the method mentioned
above. Then we can represent a residue pair in two graphs and perform
a convolution operation on each graph.

In detail, each node in the graph has the form: x = (x1,x2,…,xn),

where n is the number of features of nodes. We did a convolution op-
eration on the graph, which can be expressed as:

∑ ∑= ⎛

⎝
⎜ + + + ⎞

⎠
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= =

z σ W x
k

W x
k
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1 1

where xC is the “center node”, xiN is the ith “neighbor node”, Ei is the ith

edge, WC, WN and WE is the weight matrix of center node, neighbor
nodes and edges respectively, k is the number of neighbor nodes around
a center node, b is a vector of biases, σ is a activation function. The
dimensionality of the weight matrices is determined by the di-
mensionality of the inputs and the number of filters. And the weights
and biases can be upgraded during the training process.

Next, we stitched the convolutional results together as a vector.
Each concatenated vector represents a residue pair, and the residue
pairs formed between every two interacting protein single chains con-
stitute the residue pair sequence. We used the sequence formed by the
residue pairs of all tetramers in the training set as the input of the LSTM
model. At the end of the LSTM model, there are two fully connected
layers. There are two neurons in the last fully connected layer, which
can be used as the basis for binary classification. The number of these
two neurons represent the probability of 0 and 1, respectively, that is,
the probability of whether it is an interface residue pair. The schematic
of the model is shown in Fig. 5.

Fig. 3. The structure diagram of LSTM neural network.

Fig. 4. The structure diagram of LSTM memory unit.
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In this paper, there are two tunable parameters, the number of
neighbors of aimed residues and the number of LSTM layers. Through
training models, we selected models with suitable parameters which
have good performances. Then we evaluated the performances of these
selected models in test set by measures previously proposed. For ex-
ample, we use Neighbor_3_LSTM_4 to indicate the parameters of the
model: the number of neighbors of aimed residues is 3, the number of
LSTM layers is 4.

2.3.4. Experiments
First, we extracted nine features of each residue in these tetramers.

For each chain of a tetramer, we calculated the distance between each
amino acid with other amino acids in the same chain. From that, we
selected the nearest k amino acids as the k neighbors of this amino acid.
In other words, we can take each amino acid and its k nearest neighbor
amino acids as a graph. The nine features vector of each amino acid can
be taken as the center node in a graph. At the same time, the features
vectors of its k nearest neighbor amino acids can be taken as k neighbor
nodes of the center node in this graph. And the distances between each
amino acid with its k nearest amino acids are features of the edges in a
graph. Then, we use the graph to represent the center amino acid. To
summarize, if a protein chain has n amino acids, we can get n graphs to
represent this protein chain.

A tetramer has four protein chains. If we choose two chains as a
pair, we can get six pairs of chains. In each pair of chains, two residues
from different chains consist of a residue pair. We use two graphs of the
residues to represent the residue pair. Then, enter these two graphs into
the model mentioned above to get classification results.

We trained the model with the training dataset by five-fold cross-
validation and get the average performance of the model, in order to
select the optimal number of neighbors and LSTM layers. After ob-
taining the optimal parameters, we trained the model with all the
training dataset and tested the performance of the model with the
testing set data. The experiment flow chart is shown in Fig. 6.

2.3.5. Evaluation criteria
In this research, we are more concerned about how many of the

possible interface residue pairs given by each tetramer are correct. For
several protein monomers that interact, if we give more correct inter-
face residue pairs, it is helpful for subsequent protein docking and
biological experiments. Therefore, we proposed the following evalua-
tion criteria, and the performances of methods were evaluated basically
by these measures.

The Number of Positive interface Residue Pairs in top 10 predictions
(NPRP), which NPRP is a 6-dimensional vector as:
NPRP = (n1,n2,n3,n4,n5,n6). ni represents the number of the positive
interface residue pairs of the i th possible interface.

The Rank of the First Positive Prediction was defined as follow:
RFPP(m,n) = k, if m of tetramers have n interfaces satisfying at least
one true positive interface residue pair among top k predictions. Thus,
an ideal model would have RFPP(100%,6) = 1, i.e., in every possible
interface of tetramers, the top prediction is interface residue pair.

the Number of Correctly Predicted Tetramers: NCPT(k,n) = m
means that m tetramers satisfy there are n interfaces have at least one
true residue pair among the top k predictions of each possible interface.

=Accuracy order RFPP
TNRP

TNRP is the total number of residue pairs in one interface.

= ×Accuracy rate k n NCPT k n
TNT

( , ) ( , ) 100%

TNT represents the total number of protein tetramers in the dataset.
In order to understand these evaluation criteria better, we give three

examples to explain them. (See Fig. 7).
From the diagram, we can get:
For the first case, NPRP = (3,4,0,3,0,2), ∥ NPRP∥1 = 12;
For the second case, NPRP = (3,2,0,1,2,1), ∥ NPRP∥1 = 9;
For the third case, NPRP = (1,1,1,1,1,0), ∥ NPRP∥1 = 5.

= = =NCPT NCPT NCPT(1, 1) 1, (3, 1) 2, (5, 1) 3;

= = =N PT NCPT NCPTC (2, 2) 1, (5, 2) 2, (6, 2) 3;

= = =NCPT NCPT NCPT(3, 3) 1, (6, 3) 2, (8, 3) 3.

Fig. 5. Schematic of the model. Two residues from different chains were represented by two graphs. Then we concatenated the convolution results together as the
input of the LSTM layers.
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= = =RFPP RFPP RFPP(33.33%, 1) 1, (33.33%, 2) 2, (33.33%, 3) 3;

= = =RFPP RFPP RFPP(66.67%, 1) 3, (66.67%, 2) 5, (66.67%, 3) 6;

= = =RFPP RFPP RFPP(100%, 1) 5, (100%, 2) 6, (100%, 3) 8.

=

= =

Accuracy rate Accuracy rate

Accuracy rate

(1, 1) 33.33%, (3, 1)

66.67%, (5, 1) 100%;

=

= =

Accuracy rate Accuracy rate

Accuracy rate

(2, 2) 33.33%, (5, 2)

66.67%, (6, 2) 100%;

=

= =

Accuracy rate Accuracy rate

Accuracy rate

(3, 3) 33.33%, (6, 3)

66.67%, (8, 3) 100%.

3. Results and discussion

3.1. The prediction results of the models

In order to fix the parameters and test the accuracy of the deep
architecture, we applied this method to 65 proteins in our training set.
We input two graphs of each protein residue pair and through the
network, then we obtained the possibility of a residue pair to be an
interface residue pair. We used index accuracy defined before to eval-
uate the network structure. We have provided the prediction results
with the models which have different number of neighbors and LSTM
layers.

From the Table 3, we can see that model Neighbor_3_LSTM_4 has
the most correct number whether we take the top 10, top 20 or the top
100 results. This shows that this model can have more true interface
residue pairs in giving prediction results. From another evaluation in-
dicator in Table 4, the Neighbor_3_LSTM_4 model has smaller accuracy
order. The smaller accuracy order, it means that in the given prediction
results, the true interface residue pair appear earlier. Based on these
two points, the Neighbor_3_LSTM_4 model is the best performing of the
nine models.

We calculated the average value of each cross-validated accuracy
order of each model, and calculated the average value of each group of

Fig. 6. The experiment flow chart.

Fig. 7. Schematic diagram of prediction examples of three tetramers. Fig. 7 a. b.
c. are three prediction results of three tetramers respectively. Each result has six
columns, which represent the top 20 residue pairs from large to small in
probability on each possible interface respectively. 0 or 1 indicates whether this
residue pair are actually interface residue pair or non-interface residue pair.

Table 3
Mean of ∥NPRP∥1 for each model.

top10 top20 top100

Neighbor_3_LSTM_3 4.02 7.09 28.83
Neighbor_3_LSTM_4 4.08 7.62 30.06
Neighbor_3_LSTM_5 1.82 3.08 12.25
Neighbor_4_LSTM_3 3.34 6.92 28.29
Neighbor_4_LSTM_4 3.46 6.14 23.55
Neighbor_4_LSTM_5 2.37 4.60 17.46
Neighbor_5_LSTM_3 3.92 7.26 29.03
Neighbor_5_LSTM_4 1.69 3.00 11.45
Neighbor_5_LSTM_5 2.20 4.26 17.88

The indicator shows that each model takes the average number of correct
predictions from the top 10, top 20, top 100 results.
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cross-validation to characterize the performance of each model. From
the table, we can see the average accuracy order of Neighbor_3_LSTM_4
is the smallest, which indicates that this model performs best.

3.2. Analysis of the best model

From the above analysis, Neighbor_3_LSTM_4 has the best predictive
ability. If we regard top 100 residue pairs of each chain pair as interface
ones for this interface of the chain pair, we can correctly predict
69.23%, 92.31%, 84.62%, 84,62% and 100.00% tetramers in the five
cross validations, which the model successfully predicted 3 interfaces,
respectively. (See Table 5).

From Table 5, we can see that if we give top 10 prediction results, at
least 80% of the proteins have at least one interface with the correct
interface residue pairs in the result. And, 60% of the proteins meet the
condition: in the top 10 predictions, at least two interfaces have the
correct interfaces residue pairs. If the top 100 predictions are given,
each protein will have at least one interface with the correct interface
residue pairs. Among the top 100 predictions, the proportion of proteins
with at least three interfaces having true interface residue pairs is as
high as 86.15%.

3.3. Prediction results of the testing set with the best model

Next, we used the Neighbor_3_LSTM_4 model to make predictions
on the testing set tetramers. In the testing set, there are 42 tetramers,
including 24 tetramers with 6 interfaces, 11 tetramers with 5 interfaces,
4 tetramers with 4 interfaces and 3 tetramers with 3 interfaces. The
accuracy rate of Neighbor_3_LSTM_4 model on testing set is shown in
Table 6.

We did a statistic of tetramers which all the interfaces were pre-
dicted correctly by giving top 10, 20 and 100 residue pairs of each
interface under Neighbor_3_LSTM_4 model in our testing set. The results
are shown in the following Table 7.

Table 8 gives some examples on which the model performed well.
“—” represents that the protein doesn't have the interface. From the
Table 8, top 100 of the predicted results of protein 1FX3, 2H8N and
3ESI all include true interface residue pairs. And Fig. 8 shows two ex-
amples of prediction results.

3.4. Compared with random results

Actually, the prediction of protein tetramer interface residue pairs is
a binary classification problem. A residue pair is an interface residue
pair or not. The output result of our predictor is valued between 0 and
1, which shows the probability of interface residue pair. We sorted the
possibilities from big to small, and the residue pairs with higgest pos-
sibility were regarded as interface residue pairs. Table 9. shows the
specific predictions of the top 50,000 pairs of residue pairs as interface
predictions in each cross-validation. We found that the recall, precision
and F1 value is very low and the specificity and accuracy is very high.
Analysis of the reason, we found that this is due to the face that the
proportion of interface residues in the dataset is too low for all the
residue pairs. There are 22,794,073 residue pairs in the training set, of
which only 25,370 true interface residue pairs, which is 0.11% of all
residue pairs. That means TP + FN ≪ TN + FP. This makes the pre-
diction quite difficult. Therefore, the value of = +Recall TP

TP FN is very
low.

We take the top 50,000 residue pairs predicted as interface residue
pairs. According to the ratio of the interface residue pairs in the entire
dataset to all the residue pairs, there are only 55 interface residue pairs
in the 50,000 residue pairs, and the precision should be 0.0011, and our
precision is greater than this value. Just because the interface residue
pairs are too sparse, the precision is not high. Therefore, the F1 value
determined by the recall and the precision is also low. Fig. 9 is the ROCTa
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curve of model Neighbor_3_LSTM_4 on the training set, and the AUC
value is 0.890.

We assume that the stochastic prediction obeys the hypergeometric
distribution [26]: X~HG(N,M,K), where X is the number of real in-
terface residue pairs in the top K predictions, N is the number of all the
residue pairs in a interface of a tetramer, M is the number of real in-
terface residue pairs in this interface. Then the probability of having x
interface residue pairs in the K results of an interface given by the
stochastic model is:

= =

−
−( )

( )
( )

P X x

M
x

N M
K x

N
K

( )

For six interfaces in a tetramer, we can calculate the probability of
each interface choosing the top 100 residue pairs as P1, P2, …, P6. Then
the probability that each tetramer can be predicted correctly three in-
terfaces is

∏ ∑ ∏ ∑

∏

= − − − − −
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We calculated the average prediction probability of 65 tetramers in
the training set using the Monte Carlo simulation method to be 0.0928,
which is a small number. This shows that random prediction is almost
impossible to predict better than our method.

Table 5
The accuracy rate of Neighbor_3_LSTM_4 model on five cross validation sets.

k = 10 k = 20 k = 100

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

cv_1 84.62% 69.23% 30.77% 100.00% 76.92% 46.15% 100.00% 92.31% 69.23%
cv_2 84.62% 61.54% 15.38% 92.31% 76.92% 53.85% 100.00% 100.00% 92.31%
cv_3 76.92% 46.15% 30.77% 76.92% 76.92% 46.15% 100.00% 100.00% 84.62%
cv_4 69.23% 53.85% 30.77% 76.92% 61.54% 38.46% 100.00% 92.31% 84.62%
cv_5 84.62% 69.23% 38.46% 100.00% 92.31% 61.54% 100.00% 100.00% 100.00%
Average 80.00% 60.00% 29.23% 89.23% 76.92% 49.23% 100.00% 96.92% 86.15%

Table 6
The accuracy rate of Neighbor_3_LSTM_4 model on testing set.

k = 10 k = 20 k = 100

n = 1 83.33% 92.86% 95.24%
n = 2 71.43% 85.71% 95.24%

Table 7
Tetramers in the testing set which all interfaces were predicted correctly.

top_100 1FX3 1OFT 2H8N 2Y32 3ESI 3HM0 1IZ1 1NSW

2GJD 3CDK 3CO2 3DMP 1YIF 1P27 1WWH
top_20 2Y32 1NSW 1P27 1WWH
top_10 2Y32

Table 8
The number of correctly predicted residue pairs in top 100 results of each in-
terface.

In1 In2 In3 In4 In5 In6

Proteins with 6interfaces 1FX3 17 7 3 2 7 17
2H8N 8 10 4 6 9 8
1QVC 18 11 0 1 10 14
3ESI 17 6 6 8 6 17

Proteins with 5 interfaces 1NSW 26 – 2 4 16 24
3CO2 3 2 12 17 – 3
3DMP 17 1 – 2 8 18

Proteins with 4 interfaces 1BV4 23 – – 0 1 21
Proteins with 3 interfaces 1WWH 22 – – – 11 14

Fig. 8. A correctly predicted three-dimensional representation of the protein tetramer interface residue pairs.
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3.5. Discussion

After the above analysis, we have reason to believe that our method
can predict the interface residue pairs of protein tetramers on a com-
putation level and achieve good results. At the same time, some ex-
perimental results can also support our prediction results. Here are
some examples. (See Fig. 10)

For tetramer 2Y32 (PDB ID), it's mentioned in the experimental
article that Tyr90 residue on each subunit is located in the center of the
tetramer, which plays an important role in the formation and stability
of the structure [27]. In our prediction results, we successfully pre-
dicted the Tyr90-Tyr90 residue pairs on all interfaces. For tetramer
3F6Z (PDB ID), on the dimer interface of the tetramer, L36 makes a
close contact with the other surface formed by L34, L62, L69 and V81
[28]. In our prediction results, in the dimer formed by the B and D
chains, the interface residue pairs L34-L34 and L34-L36 were success-
fully predicted. For tetramer 3 V15 (PDB ID), experiments have shown
that the center of the dimers interface in the tetramer is methionine
(M143) and a leucine (L221) [29]. We successfully predicted the re-
sidue pair M143-P139 on the first dimer interface and residue pair
P139-M143 on the second dimer interface.

4. Conclusion

In this paper, we have developed a model for predicting protein
tetramer interaction interface residue pairs. This method takes ad-
vantage of the physicochemical and geometric properties of amino
acids as features, considering the effects of an amino acid and the
surrounding amino acids, using LSTM neural networks combined with
graph representation. In our test, the accuracy rate of successfully
predicting one interface and two interfaces by giving 10 residue pairs
were 83.33% and 71.43% respectively, which has a great guidance
significant to biological experiment.

Availability of data and materials

Our code and parameters of model can be found in https://github.
com/Sundw-818/Tetramer and full testing data is available in ftp://
202.112.126.135/pub/Tetramer/.

Credit author

Xinqi Gong: Conceptualization, Data curation, Supervision, Fund

Table 9
Results of the Neighbor_3_LSTM_4 in 5-fold cross-validation on the training set.

TP TN FP FN Recall Precision Specificity F1 Accuracy

Cross-validation1 1230 3,996,938 48,770 4644 0.209 0.025 0.988 0.044 0.987
Cross-validation2 1296 8,076,105 48,704 4332 0.230 0.026 0.994 0.047 0.993
Cross-validation3 1598 3,308,899 48,402 2606 0.380 0.032 0.986 0.059 0.985
Cross-validation4 1194 3,664,234 48,806 3392 0.260 0.024 0.987 0.044 0.986
Cross-validation5 1591 3,479,436 48,409 3487 0.313 0.032 0.986 0.058 0.985

Fig. 9. The ROC curve of model Neighbor_3_LSTM_4 on the training set.
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